Visualization and functional dissection of coaxial paired SpoIIIE channels across the sporulation septum
نویسندگان
چکیده
SpoIIIE is a membrane-anchored DNA translocase that localizes to the septal midpoint to mediate chromosome translocation and membrane fission during Bacillus subtilis sporulation. Here we use cell-specific protein degradation and quantitative photoactivated localization microscopy in strains with a thick sporulation septum to investigate the architecture and function of the SpoIIIE DNA translocation complex in vivo. We were able to visualize SpoIIIE complexes with approximately equal numbers of molecules in the mother cell and the forespore. Cell-specific protein degradation showed that only the mother cell complex is required to translocate DNA into the forespore, whereas degradation in either cell reverses membrane fission. Our data suggest that SpoIIIE assembles a coaxially paired channel for each chromosome arm comprised of one hexamer in each cell to maintain membrane fission during DNA translocation. We show that SpoIIIE can operate, in principle, as a bi-directional motor that exports DNA.
منابع مشابه
Recruitment, Assembly, and Molecular Architecture of the SpoIIIE DNA Pump Revealed by Superresolution Microscopy
ATP-fuelled molecular motors are responsible for rapid and specific transfer of double-stranded DNA during several fundamental processes, such as cell division, sporulation, bacterial conjugation, and viral DNA transport. A dramatic example of intercompartmental DNA transfer occurs during sporulation in Bacillus subtilis, in which two-thirds of a chromosome is transported across a division sept...
متن کاملThe ATPase SpoIIIE Transports DNA across Fused Septal Membranes during Sporulation in Bacillus subtilis
The FtsK/SpoIIIE family of ATP-dependent DNA transporters mediates proper chromosome segregation in dividing bacteria. In sporulating Bacillus subtilis cells, SpoIIIE translocates much of the circular chromosome from the mother cell into the forespore, but the molecular mechanism remains unclear. Using a new assay to monitor DNA transport, we demonstrate that the two arms of the chromosome are ...
متن کاملSeptal localization of the SpoIIIE chromosome partitioning protein in Bacillus subtilis.
The 787 amino acid SpoIIIE protein of Bacillus subtilis is required for chromosome partitioning during sporulation. This process differs from vegetative chromosome partitioning in that it occurs after formation of the septum, apparently by transfer of the chromosome through the nascent septum in a manner reminiscent of plasmid conjugation. Here we show that SpoIIIE is associated with the cell m...
متن کاملDynamic SpoIIIE assembly mediates septal membrane fission during Bacillus subtilis sporulation.
SpoIIIE is an FtsK-related protein that transports the forespore chromosome across the Bacillus subtilis sporulation septum. We use membrane photobleaching and protoplast assays to demonstrate that SpoIIIE is required for septal membrane fission in the presence of trapped DNA, and that DNA is transported across separate daughter cell membranes, suggesting that SpoIIIE forms a channel that parti...
متن کاملAssembly of the SpoIIIE DNA Translocase Depends on Chromosome Trapping in Bacillus subtilis
Sporulation in Bacillus subtilis is an attractive system in which to study the translocation of a chromosome across a membrane. Sporulating cells contain two sister chromosomes that are condensed in an elongated axial filament with the origins of replication anchored at opposite poles of the sporangium. The subsequent formation of a septum near one pole divides the sporangium unequally into a f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2015